Last edited by Voodoomuro

Wednesday, August 5, 2020 | History

8 edition of **Algebraic groups and number theory** found in the catalog.

- 127 Want to read
- 9 Currently reading

Published
**1994**
by Academic Press in Boston
.

Written in English

- Algebriac number theory.,
- Linear algebraic groups.

**Edition Notes**

Includes bibliographical references (p. 583-608) and index.

Statement | Vladimir Platonov, Andrei Rapinchuk ; translated by Rachel Rowen. |

Series | Pure and applied mathematics ;, v. 139, Pure and applied mathematics (Academic Press) ;, 139. |

Contributions | Rapinchuk, A. S. |

Classifications | |
---|---|

LC Classifications | QA3 .P8 vol. 139, QA247 .P8 vol. 139 |

The Physical Object | |

Pagination | xi, 614 p. : |

Number of Pages | 614 |

ID Numbers | |

Open Library | OL1731368M |

ISBN 10 | 0125581807 |

LC Control Number | 92035876 |

The present book gives an exposition of the classical basic algebraic and analytic number theory and supersedes my Algebraic Numbers, including much more material, e. g. the class field theory on which 1 make further comments at the appropriate place later. For different points of view, the reader is encouraged to read the collec tion of papers from the Brighton Symposium (edited by 2/5(1). Differential Galois theory has seen intense research activity during the last decades in several directions: elaboration of more general theories, computational aspects, model theoretic approaches, applications to classical and quantum mechanics as well as to other mathematical areas such as number theory.

The theory is developed in such a way that almost everything carries over to quantum groups. It emphasizes the similarities between the modular representation theory and the representation theory for quantum groups at roots of unity. The chapter provides basic general definitions concerning algebraic groups and their representations. Geometric Group Theory Preliminary Version Under revision. The goal of this book is to present several central topics in geometric group theory, primarily related to the large scale geometry of infinite groups and spaces on which such groups act, and to illustrate them with fundamental theorems such as Gromov’s Theorem on groups of polynomial growth.

In I wrote out a brief outline, following Quillen's paper Higher algebraic K-theory I. It was overwhelming. I talked to Hy Bass, the author of the classic book Algebraic K-theory, about what would be involved in writing such a book. It was scary, because (in ) I . Questions tagged [algebraic-groups] Ask Question For questions about groups which have additional structure as algebraic varieties (the vanishing sets of collections of polynomials) which is compatible with their group structure. algebraic-geometry algebraic-number-theory algebraic-groups formal-power-series formal-groups. asked Oct 17 '

You might also like

Benjamin S. Berry.

Benjamin S. Berry.

Poems of the land army

Poems of the land army

Nicholas Ridley

Nicholas Ridley

Odyssey of Ben ONeal (Cape Hatteras Trilogy)

Odyssey of Ben ONeal (Cape Hatteras Trilogy)

Women in R̥gveda.

Women in R̥gveda.

A brief illustration and confirmation of the Divine right of infant baptism

A brief illustration and confirmation of the Divine right of infant baptism

Bibliography of education for 1909-10

Bibliography of education for 1909-10

Francis Bacon

Francis Bacon

Embrace Tiger, Return to Mountain

Embrace Tiger, Return to Mountain

order for the installation of a chairman of Presbytery or a president of Conference or a moderator of General Council.

order for the installation of a chairman of Presbytery or a president of Conference or a moderator of General Council.

Potterton sketchfile of elaborate bed drapery designs.

Potterton sketchfile of elaborate bed drapery designs.

The law and the teacher in Missouri

The law and the teacher in Missouri

great ritual

great ritual

William Blake; the politics of vision.

William Blake; the politics of vision.

Management of herbaceous seeps and wet savannas for threatened and endangered species

Management of herbaceous seeps and wet savannas for threatened and endangered species

Linda Carter Holman

Linda Carter Holman

Field hydraulic performance of one- and two-story residential plumbing systems with reduced-size vents

Field hydraulic performance of one- and two-story residential plumbing systems with reduced-size vents

Search in this book series. Algebraic Groups and Number Theory. Edited by Vladimir Platonov, Andrei Rapinchuk. VolumePages iii-xi, () Download full volume. Previous volume. Next volume. Algebraic number theory Pages Download PDF. Chapter preview. select article 2. Algebraic Groups. Algebraic number theory involves using techniques from (mostly commutative) algebra and ﬁnite group theory to gain a deeper understanding of number ﬁelds.

The main objects that we study in algebraic number theory are number ﬁelds, rings of integers of number ﬁelds, unit groups, ideal class groups,norms, traces,File Size: KB.

Algebraic number theory involves using techniques from (mostly commutative) algebra and nite group theory to gain a deeper understanding of the arithmetic of number elds and related objects (e.g., functions elds, elliptic curves, etc.).

ISBN: OCLC Number: Description: XI, Seiten: Diagramme. Contents: (Chapter Heading): Algebraic Number Algebraic groups and number theory book. Algebraic Groups. Algebraic Number Theory "This book is the second edition of Lang's famous and indispensable book on algebraic number theory.

The major change from the previous edition is that the last chapter on explicit formulas has been completely rewritten. In addition, a few new sections have been added to the other chaptersCited by: He wrote a very inﬂuential book on algebraic number theory inwhich gave the ﬁrst systematic account of the theory.

Some of his famous problems were on number theory, and have also been inﬂuential. TAKAGI (–). He proved the fundamental theorems of abelian class ﬁeld theory, as conjectured by Weber and Hilbert.

NOETHER. Algebraic Groups The theory of group schemes of ﬁnite type over a ﬁeld. J.S. Milne Version Decem This is a rough preliminary version of the book published by CUP inThe final version is substantially rewritten, and the numbering has changed. Algebraic Groups and Number Theory provides the first systematic exposition in mathematical literature of the junction of group theory, algebraic geometry, and number theory.

The exposition of the topic is built on a synthesis of methods from algebraic geometry, number theory, analysis, and topology, and the result is a systematic overview Book Edition: 1. Arithmetic Groups and Reduction Theory. Adeles. Galois Cohomology. Approximation in Algebraic Groups.

Class Numbers andClass Groups of Algebraic Groups. Normal Structure of Groups of Rational Points of Algebraic Groups. Appendix A. Appendix B: Basic aic Number Theory: Algebraic Number Fields, Valuations, and Completions. "This book is a completely new version of the first edition.

The aim of the old book was to present the theory of linear algebraic groups over an algebraically closed field. Reading that book, many people entered the research field of linear algebraic groups. The present book has a wider by: This is an undergraduate-level introduction to elementary number theory from a somewhat geometric point of view, focusing on quadratic forms in two variables with integer coefficients.

See the download page for more information and to get a pdf file of the part of the book that has been written so far (which is almost the whole book now). Algebraic Groups And Number Theory Pdf Download >> Algebraic groups play much the same role for algebraists as Lie groups play for analysts.

This book is the first comprehensive introduction to the theory of algebraic group schemes over fields that includes the structure theory of semisimple algebraic groups, and is written in the language of modern algebraic by: Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued mathematician Carl Friedrich Gauss (–) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics." Number theorists study prime numbers as well as the.

This milestone work on the arithmetic theory of linear algebraic groups is now available in English for the first time. Algebraic Groups and Number Theory provides the first systematic exposition in mathematical literature of the junction of group theory, algebraic geometry, and number theory.

The exposition of the topic is built on a synthesis of methods from algebraic geometry, number. Examples and Problems of Applied Differential Equations. Ravi P. Agarwal, Simona Hodis, and Donal O'Regan. Febru Ordinary Differential Equations, Textbooks.

A Mathematician’s Practical Guide to Mentoring Undergraduate Research. Michael Dorff, Allison Henrich, and Lara Pudwell. Febru Undergraduate Research. Algebraic groups play much the same role for algebraists as Lie groups play for analysts.

This book is the first comprehensive introduction to the theory of algebraic group schemes over fields that includes the structure theory of semisimple algebraic groups, and is written in the language of modern algebraic : J.

Milne. The book covers the classical number theory of the th centuries with simple algebraic proofs: theorems published by Fermat (his Last Theorem), Euler, Wilson, Diophantine equations, Lagrange and Legendre Theorems on the representation of integers as sums of squares and other classes of numbers, the factorization of polynomials, Catalan’s and Pell’s equations.

Algebraic number theory aims to overcome this problem. Most examples are taken from quadratic fields, for which calculations are easy to perform. The middle section considers more general theory and results for number fields, and the book concludes with some topics which are more likely to be suitable for advanced students, namely, the analytic.

Algebraic Number Theory book. Read 4 reviews from the world's largest community for readers. The title of this book may be read in two ways.

One is 'alge /5(4). The book is still remarkably up-to-date. It covers nearly all areas of the subject, although its approach is slanted somewhat toward class field theory.

Some more recent texts with a similar approach and coverage include Lang’s Algebraic Number Theory and Weil’s misnamed Basic Number Theory.Apart permutation groups and number theory, a third occurence of group theory which is worth mentioning arose from geometry, and the work of Klein (we now use the term Klein group for one of the groups of order 4), and Lie, who studied transformation groups, that is transformations of geometric Size: 1MB.

Commutative Algebra, Algebraic Geometry, Number theory, Field Theory, Galois Theory by Sudhir R. Ghorpade Fundamental Problems in Algorithmic Algebra by Chee Yap Braid groups and Galois theory by Author: Kevin de Asis.